

## Arcep's contribution to the European Commission's call for evidence on the review of the Digital Decade Policy Programme<sup>1</sup>

Arcep – January 2026

The Digital Decade Policy Programme (DDPP) promotes the EU's digital transformation while coordinating the actions between Member States required for its success.

Currently halfway through this "Digital Decade", a review of this programme adopted in 2022 by the European Commission appears useful and necessary. This exercise will enable the Commission to respond to remaining challenges and, if necessary, adjust the targets and objectives of the DDPP to new realities, whether technological, economic, geopolitical, administrative or environmental.

In this context, Arcep welcomes the European Commission's initiative to consult all stakeholders in order to assess as broadly as possible the extent to which the current 2030 targets and objectives of the DDPP remain appropriate.

Based on its experience and expertise, Arcep would like to draw the European Commission's attention to certain targets and objectives of the DDPP relating to the economic sectors it regulates. From a pragmatic standpoint, Arcep considers it useful to (i) refocus mobile network roll-out objectives on services and uses, (ii) promote the monitoring of digital infrastructure roll-out and service accessibility and, more generally, (iii) create the conditions for environmentally friendly digital development by incorporating environmental objectives into the DDPP.

### 1 Refocusing mobile network roll-out objectives on services and uses

The review process initiated by the Commission provides an opportunity to supplement the objectives relating to the roll-out of wireless networks by examining in greater depth the issues of accessible services, usage and user satisfaction, beyond purely technological considerations.

It is proposed to move towards technologically neutral connectivity objectives that are "tailored to needs, everywhere and for everyone", taking into account evolving uses and aiming to ensure that investments in digital infrastructure provide access to the services of tomorrow, whether for the needs of the general public or the professional needs of different sectors of activity.

In the future, usages could render technology-specific or speed-based targets less relevant. For example, the development of uses based on artificial intelligence applications could have consequences for network capacity requirements, particularly with regard to upload speeds, which are difficult to predict.

The study published by Arcep on changes in wireless telecommunications network usage and wireless network capacity could help inform discussions on this topic<sup>2</sup>.

---

<sup>1</sup> Please note that this is a translation of the official version of Arcep's response, written in French and available on its website.

<sup>2</sup> See [Etude portant sur l'évolution des usages sur les réseaux de télécommunications sans fil et le dimensionnement des réseaux sans fil | Arcep](#)

## 2 Monitoring the roll-out of digital infrastructure and service accessibility

Arcep fully supports the European Commission's ambition to have European indicators for monitoring consistent and comparable roll-outs, promoting investment by economic players. With regards mobile networks, this monitoring could be based on a shared indicator that concretely reflects "5G-equivalent performance" in terms of available backhaul capacity, bandwidth, latency, and the ability to deliver differentiated services, for example.

At the same time, it seems useful to provide users with information on the quality of mobile services that correspond to real-world usage. For instance, Arcep has updated its published average speed indicator as part of the annual mobile service quality survey results. Test results are presented according to three thresholds—3, 8, and 30 Mbit/s—reflecting different levels of demand based on usage:

- 3 Mbit/s: speed suitable for the least demanding uses of mobile internet, such as web browsing;
- 8 Mbit/s: speed suitable for the most common uses such as video streaming;
- Above 30 Mbit/s: speed suitable for the most demanding uses, such as the use of collaborative tools in a professional environment.

These mobile service quality thresholds reflect user experience and are tailored to different types of areas (urban, intermediate, rural). This approach also avoids incentivizing operators to pursue maximum speeds unnecessarily and aligns with Arcep's annual "Achieving digital sustainability" survey initiative.

More broadly, Arcep has been implementing a comprehensive system for monitoring and informing the public, combining theoretical coverage maps<sup>3</sup> verified through accessibility tests, annual service quality measurement campaigns involving over a million tests (web browsing, streaming, voice quality, etc.), and the use of third-party crowdsourced data to reflect the diversity of real-life situations encountered by users. All this data is published on the "[Mon réseau mobile](#)" mapping site, allowing expert users to overlay different data layers. Raw data is also available as open data.

A similar approach is applied to fixed networks through the "[Ma connexion internet](#)"<sup>4</sup> website, as well as the publication of the optical fibre network quality observatory<sup>5</sup>.

This "data-driven regulation" approach complements traditional regulatory tools. Its principle is to harness the power of information to steer the market in the right direction. Arcep empowers users to make informed choices by providing precise, customizable information. This also encourages competition based not only on price but also on service quality, thereby valuing investment in networks.

---

<sup>3</sup> Namely, theoretical coverage maps simulated by operators and sent to Arcep, which verifies their reliability through field testing campaigns (drive tests).

<sup>4</sup> "[Ma connexion internet](#)" is a map-based search engine that makes it possible to identify, for any address in the country, the available technologies and connection speeds, as well as information on the progress of fibre roll-out ("[Carte fibre](#)"). These interactive maps are published as part of the [Fixed High-Speed and Very High-Speed Broadband Observatory](#) set up by Arcep, with the underlying data made available as open data.

<sup>5</sup> The observatory provides an account of trends in outage rates and connection failure rates.

### 3 Integrating environmental sustainability objectives into the DDPP

**Arcep believes that it is necessary to strengthen the environmental focus of the Digital Decade Policy Programme by setting environmental targets based on well-defined indicators.** Controlling the environmental footprint of digital technologies is a major challenge that has been clearly identified by the European Commission, that refers to certain initiatives in qualitative terms in the current DDPP and in Annex 1 on the State of the EU digital transformation in 2025<sup>6</sup>. However, this challenge is not currently covered by any objectives within the framework of the DDPP.

While digital innovations can provide solutions for the ecological transition, digital infrastructures and services also pose significant environmental challenges. For example, there is consensus that electricity consumption linked to data centres will increase significantly in the coming years, particularly as a result of the rise of AI<sup>7</sup>.

A common European approach to sustainable digital technologies can help make environmental performance a lever for competitiveness. European players spearheading more sustainable models (energy efficiency, digital sufficiency, circular economy) can play a leading role on the global stage, reducing dependence on unsustainable supply chains and thereby strengthening European strategic autonomy.

**It is therefore important to be able to set targets for controlling or even reducing the environmental footprint of the ICT sector, by adding environmental indicators to the DDPP.**

**Such objectives have already been set at other levels. For example, the International Telecommunication Union (ITU) has established a target—aligned with the Paris Agreement—of reducing greenhouse gas emissions by 45% between 2020 and 2030, a goal that companies are pursuing as part of their decarbonization roadmaps. Recently, through its National Low-Carbon Strategy 3 project, France has also defined a decarbonization trajectory for the ICT sector, aiming to control or even reduce its carbon footprint.**

Furthermore, there are already environmental indicators that are being monitored and for which targets could be set, whether under the Energy Efficiency Directive for data centers (e.g. the electricity consumption of data centres subject to reporting obligations) or under the Code of Conduct for sustainable telecommunication networks. Additionally, since the European Commission has worked on this Code of Conduct, monitoring the number of stakeholders implementing this voluntary approach should be encouraged.

**Other targets could be set, particularly for ICT electricity consumption (and, by extension, associated greenhouse gas emissions) or water consumption of digital infrastructures, requiring new indicators to be developed based on existing standards. The collection of environmental data in Member States could enable such indicators to be obtained and monitored. Lastly, it seems essential, in this context, to consider how to hold digital service providers accountable, given the interdependencies between the elements of the digital value chain required for their operation.**

---

<sup>6</sup> [State of the Digital Decade 2025: Keep building the EU's sovereignty and digital future](#), Annex to the Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, ANNEX 1 COM (2025) 290 final, 16.6.2025, Brussels.

<sup>7</sup> The International Energy Agency (IEA) showed in its latest report that global electricity consumption by data centres was 415 TWh in 2024, representing 1.5% of global electricity consumption. It estimates that global electricity consumption by data centres could more than double by 2030 to reach 945 TWh, mainly due to the growth of AI. See IEA, [Energy and AI](#), p.63, 2025.