REPUBLIQUE FRANCAISE

BAROMÈTRE DE L'INTERCONNEXION DE DONNÉES EN FRANCE

04 JUILLET 2023

Sommaire

1.	Comprendre l'interconnexion de données	3
	1.1. Qu'est-ce que l'interconnexion de données ?	3
	1.2. Acteurs impliqués	3
	1.3. Évolution des interactions entre les différents acteurs	4
	1.4. Enjeux de l'interconnexion	5
	1.5. Modes d'interconnexion	5
	1.5.1. Transit	5
	1.5.2. <i>Peering</i>	
	1.6. Organisation hiérarchique de l'internet	.10
	1.7. Cadre de régulation applicable à l'interconnexion	
2.	État des lieux de l'interconnexion en France	.13
	2.1. Trafic entrant	.14
	2.2. Trafic sortant	.15
	2.3. Évolution des capacités installées	.17
	2.4. Évolution des modalités d'interconnexion	
	2.5. Répartition du trafic par mode d'interconnexion	.19
	2.6. Décomposition du trafic selon l'origine	
	2.7. Évolution des tarifs	24

1. COMPRENDRE L'INTERCONNEXION DE DONNÉES

1.1. Qu'est-ce que l'interconnexion de données ?

L'interconnexion constitue le fondement d'internet. Elle désigne la relation technico-économique qui s'établit entre différents acteurs pour se connecter et échanger mutuellement du trafic. Elle garantit le maillage global du réseau et permet aux utilisateurs finals¹ de communiquer entre eux².

1.2. Acteurs impliqués

Dans l'écosystème de l'internet, divers acteurs principaux s'interconnectent :

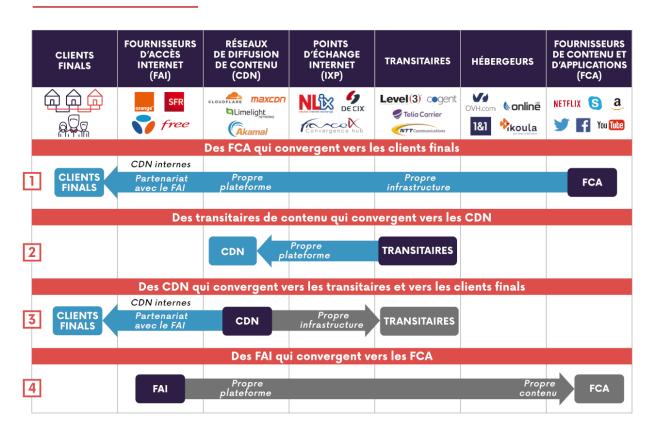
- les fournisseurs de contenu et d'applications (FCA) : les propriétaires du contenu, qui font appel à plusieurs intermédiaires pour acheminer leur contenu aux utilisateurs finals ;
- les hébergeurs³: les propriétaires des serveurs hébergeant un contenu géré par des tiers (FCA ou individus);
- les transitaires : les gestionnaires des réseaux internationaux qui font office d'intermédiaires entre les FCA et les FAI pour acheminer le trafic ;
- les points d'échange internet (IXP *Internet Exchange Point*) : les infrastructures qui permettent aux différents acteurs de s'interconnecter directement, via un point d'échange, plutôt que par le biais d'un ou de plusieurs transitaires ;
- les réseaux de diffusion de contenu (CDN Content Delivery Network): les réseaux qui se spécialisent dans la livraison de volumes de trafic importants vers plusieurs FAI, dans des zones géographiques variées et grâce à des serveurs-caches au plus proche des clients finals afin d'optimiser l'acheminement améliorant les performances et réduisant les coûts;
- les fournisseurs d'accès internet (FAI) : les opérateurs de réseaux qui sont chargés de livrer le trafic à l'utilisateur final.

EXEMPLES D'ACTEURS D'INTERNET

FOURNISSEURS RÉSEAUX **FOURNISSEURS POINTS** DE DIFFUSION DE CONTENU ET D'APPLICATIONS D'ÉCHANGE D'ACCÈS TRANSITAIRES **HÉBERGEURS** INTERNET **DE CONTENU** INTERNET (FAI) (CDN) (FCA) (IXP) V CLOUDFLARE MAXCON Level(3) cogent NETFLIX S **l** onlin€ OVH.com Limelight Telia Carrier forcel 1&1 **koula** Akamai NTT Communications

¹ Les individus qui utilisent leurs propres équipements et contractent un abonnement auprès d'un FAI pour accéder à du contenu sur internet.

² L'Arcep tient à préciser que le présent baromètre concerne uniquement l'interconnexion de données dans le réseau internet et ne s'applique pas à l'interconnexion des réseaux de deux opérateurs pour la terminaison d'appel vocal.


³ Plus précisément, l'article 6-1-2° de la loi 2004-575 du 21 juin 2004 pour la confiance dans l'économie numérique définit les hébergeurs comme étant les personnes physiques ou morales qui assurent, même à titre gratuit, pour mise à disposition du public par des services de communication au public en ligne, le stockage de signaux, d'écrits, d'images, de sons ou de messages de toute nature fournis par des destinataires de ces services.

1.3. Évolution des interactions entre les différents acteurs

Comme le montre le tableau ci-dessous, la tendance actuelle du marché est à la convergence entre les différents acteurs. Plusieurs scénarios d'intégration verticale sont observés, vers l'amont comme vers l'aval de la chaîne de valeur :

- dans l'optique de se rapprocher du client final et d'améliorer la résilience et la qualité de service de leurs services, les FCA mettent en place leur propre infrastructure réseau et leurs propres plateformes CDN;
- 2. au-delà de leurs prestations de transit, les transitaires se basent sur leur infrastructure existante pour développer des services CDN et héberger du contenu tiers ;
- 3. d'une part, les CDN déploient leur propre infrastructure à travers le monde. D'autre part, ils concluent des partenariats avec les FAI afin de placer leurs serveurs dans le réseau de ces derniers et être le plus proche possible des clients finals;
- 4. les FAI diversifient leurs activités en créant leurs propres contenus et en assurant leur diffusion *via* leurs propres plateformes.

LA CONVERGENCE DES ACTEURS DE L'ÉCOSYSTÈME INTERNET

1.4. Enjeux de l'interconnexion

La divergence éventuelle des intérêts respectifs des acteurs de l'écosystème peut engendrer une différence de point de vue, voire susciter des tensions ponctuelles.

Un échec des négociations entre deux acteurs interconnectés peut par exemple entraîner une dégradation de la qualité de service ou la rupture de l'interconnexion (et donc rendre impossible aux utilisateurs – partiellement ou totalement – l'accès, la diffusion ou l'utilisation des applications et des services de leur choix). Une interconnexion pourrait également être utilisée dans une optique de discrimination anticoncurrentielle à l'égard de la source, de la destination ou du contenu de l'information transmise⁴.

Selon les conditions techniques et tarifaires appliquées, l'interconnexion est ainsi susceptible d'influencer de diverses façons l'investissement dans les réseaux, la qualité de service perçue par l'utilisateur final ou encore le rythme d'innovation dans les services, contenus et applications.

■ Pour en savoir plus : *L'interconnexion pour les nuls*, par Stéphane Bortzmeyer.

1.5. Modes d'interconnexion

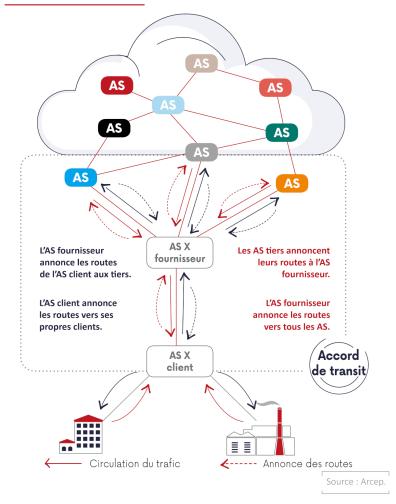
L'interconnexion s'effectue entre deux différents AS (*Autonomous Systems*)⁵. Pour que l'information puisse être échangée d'un point à un autre de l'internet, elle doit être acheminée d'AS en AS, et au sein de chaque AS, de routeur en routeur, le routeur étant l'équipement de base assurant l'aiguillage des paquets de données au sein de l'internet. Pour ce faire, chaque AS annonce aux autres AS avec lesquels il est interconnecté physiquement les routes⁶ vers les équipements de réseau et utilisateurs finals qu'il dessert.

Il existe deux principaux modes d'interconnexion : le transit et le peering.

1.5.1. Transit

Principe général

Le transit est une prestation par laquelle un opérateur (fournisseur) propose une connectivité globale à un autre opérateur (client) et achemine le trafic à destination ou en provenance de cet opérateur (client), quelle que soit l'origine initiale ou la destination finale de celui-ci (sauf restriction relevant d'un accord entre les parties, par exemple en termes d'étendue géographique du service).


-

⁴ Voir la **partie 1.7**.

⁵ Ensemble de réseaux gérés par une même autorité administrative et ayant des protocoles de routage relativement homogènes. Exemple de certains AS en France : AS5410 (Bouygues Télécom), AS12322 (Proxad – Free), AS3215 (RBCI – Orange) et AS15557 et AS21502 (SFR), AS16276 (OVH), AS12876 (Online), etc.

⁶ Chaque AS annonce des préfixes IP, chaque préfixe IP faisant référence à un groupe d'adresses IP.

PRINCIPE D'UN ACCORD DE TRANSIT

Coût de transit

Afin d'interconnecter deux réseaux, un lien d'interconnexion avec une capacité donnée est mis en place. La prestation de transit est généralement facturée en fonction du trafic écoulé sur ce lien en Mbit/s, calculée au 95° centile.

La mesure d'un trafic au 95° centile correspond à la valeur maximale du débit échangé, en ignorant cependant les 5% du temps les plus chargés.

Par ailleurs, un seuil minimal de trafic (appelé « *commit* ») ainsi qu'une durée d'engagement peuvent être établis par l'opérateur fournisseur, ce qui d'une part lui garantit un revenu minimum.

Le tarif constaté des prestations de transit a diminué régulièrement au cours du temps du fait de la combinaison de l'augmentation des volumes de trafic, de la baisse des coûts unitaires des équipements et de la pression concurrentielle.

Transit prices follow transport pricing trends

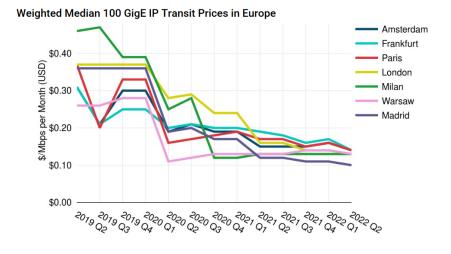
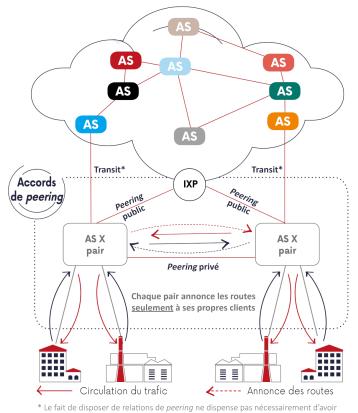


Figure 1 Tendances d'évolution des prix du transit en Europe. Source : Telegeography.

1.5.2. *Peering*

●■■ TeleGeography


Principe général

Le *peering* est un type d'accord d'interconnexion permettant à deux opérateurs de s'échanger en direct le trafic qu'ils adressent mutuellement à leurs clients respectifs. Ainsi, chaque acteur ne donne accès qu'à son réseau, rendant ce lien mobilisable uniquement pour le trafic de ses clients.

Le *peering* étant traditionnellement déployé entre deux opérateurs de profil similaire (pairs) qui y trouvent un intérêt mutuel, ce type d'accord est généralement gratuit, hors frais propres de mise en œuvre du lien d'interconnexion.

www.telegeography.com

PRINCIPE DES ACCORDS DE PEERING

* Le fait de disposer de relations de *peering* ne dispense pas nécessairement d'avoir recours à des prestations de transit, pour se raccorder au reste de l'internet.

Source : Arcen

Peering payant

Bien que les accords de *peering* soient le plus souvent gratuits, l'apparition de dissymétries de trafic ou d'intérêt entre certains acteurs a conduit au développement d'accords de *peering* payant.

Ces accords sont notamment – mais pas exclusivement – mis en œuvre dans le cadre du développement récent d'accords d'interconnexion directe entre des FCA de grande taille et certains FAI (voire entre des FAI et/ou des transitaires). C'est alors l'acteur qui envoie le plus de trafic vers l'autre qui paye (le FCA dans le cas précédent).

Accords de peering

Les acteurs présentent des stratégies très diverses en matière d'interconnexion. Celles-ci font l'objet d'un document de référence, appelé *peering policy* (en français « politique de *peering »*), généralement public⁷, dans lequel sont définis notamment les plafonds de ratios d'asymétrie du trafic, le niveau minimum de trafic échangé, la répartition géographique des points d'interconnexion, etc.

Pour autant, les accords de *peering* s'établissent en pratique le plus souvent de manière relativement rapide et informelle : ainsi, une large majorité d'entre eux ne fait pas l'objet d'un contrat écrit et relève d'un simple accord de principe entre les deux pairs, dans le respect de

⁷ Exemples de politiques de peering: <u>ASS410 (Bouygues Télécom</u>), <u>AS12322 (Proxad – Free)</u>, <u>AS3215 (RBCI – Orange)</u> et <u>AS15557 (SFR)</u>.

leurs chartes de *peering* éventuelles. D'après PCH⁸, environ 99,9% des accords de *peering* se sont faits d'une manière informelle autour d'une poignée de main.

Certains acteurs imposent la mise en œuvre d'un contrat même dans le cas d'un *peering* gratuit afin d'établir des conditions telles que le trafic minimum et le respect d'un ratio d'asymétrie : en cas de non-respect d'une condition, le contrat bascule automatiquement en *peering* payant. PCH propose ainsi une distinction entre accords symétriques et asymétriques.

Les points d'échange Internet

Le peering peut physiquement être réalisé :

- dans les locaux de l'un des pairs ;
- dans les locaux d'un acteur tiers (Datacenter);
- dans un point d'échange (*Internet Exchange Point* ou IXP): un site dédié à l'interconnexion pouvant être neutre (c'est-à-dire géré par un acteur tiers, parfois une association) ou géré par un opérateur donné.

Les points d'échange permettent la mutualisation des coûts d'hébergement et de raccordement, ainsi que la mise en œuvre efficace de nombreuses relations de peering (mais également de transit). En effet, être présent dans un point d'échange permet de s'interconnecter (moyennant un accord, souvent oral et rapidement obtenu, entre les parties) avec tous les AS présents dans ce point d'échange. Les IXP contribuent également au maillage local d'Internet : ils créent des liens entre opérateurs au niveau local (à l'échelle d'une région par exemple) et favorisent les interconnexions y compris des plus petits acteurs. Ce sont des points de rencontre privilégiés entre opérateurs, fournisseurs de contenu et transitaires.

Peering public et peering privé

On distingue deux principaux modes de peering:

- le mode bilatéral, aussi appelé « *peering* privé », qui peut être localisés dans le locaux d'un des pairs ou dans un Datacenter ;
- le mode multilatéral, aussi appelé « peering public », réalisé dans un IXP.

Le *peering* privé est généralement employé lorsque la capacité d'interconnexion entre les deux pairs est suffisante pour rendre économiquement viable une interconnexion dédiée. Il présente également des avantages en matière de maintenance et de sécurité de l'interconnexion.

Le *peering* public a été développé pour rendre économiquement viable l'interconnexion directe pour des capacités moindres, en mutualisant les capacités d'interconnexion entre plusieurs pairs grâce à des équipements actifs partagés de commutation.

⁸ Bill Woodcock, Marco Frigino, 2021 <u>Survey of Internet Carrier Interconnection Agreements</u>, Packet Clearing House, Décembre 2021, p.4.

Pourquoi choisir le peering à la place du transit ?

Recourir à une prestation de transit ou mettre en place un accord de *peering* pour échanger du trafic avec les clients d'un autre opérateur dépend à la fois du pouvoir de négociation des parties et d'un arbitrage technico-économique, dont les paramètres sont notamment les coûts relatifs des différentes options et la qualité de service.

D'une part, les FAI cherchent à mettre en place des relations de *peering* (gratuit ou à tarif réduit) avec d'autres FAI afin de réduire les coûts de transit. Ces relations réduisent la charge de trafic sur les services de transit, souvent coûteux.

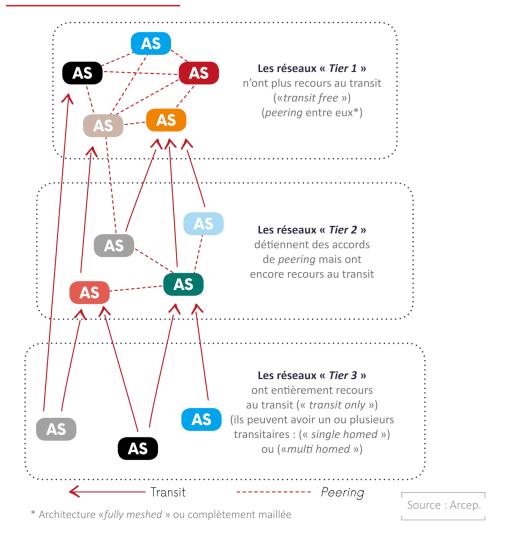
D'autre part, le *peering* utilise des circuits directs ou des points d'échange régionaux qui permettent aux utilisateurs finals d'obtenir de meilleures performances. Sans interconnexion directe, le trafic des clients peut devoir passer par plusieurs réseaux, sur de grandes distances et donc avec une latence élevée, avant d'atteindre un service donné.

Si le *peering* présente un intérêt évident, certains petits acteurs au faible pouvoir de négociation n'ont d'autres choix que de payer un ou plusieurs transitaires pour pouvoir connecter leurs clients.

1.6. Organisation hiérarchique de l'internet

Les acteurs de l'internet sont généralement classés en trois groupes, selon la nature de leurs relations d'interconnexion :

• Tier 1: ce sont les acteurs qui ont développé un réseau longue distance et disposent d'interconnections directes avec les autres opérateurs majeurs au niveau mondial. Ils n'ont recours à aucune prestation de transit pour accéder à l'intégralité des réseaux constituant l'internet. Pour assurer une connectivité mondiale, ces opérateurs doivent être tous reliés entre eux par des accords de *peering*. En s'appuyant sur ces relations de *peering*, ils sont alors en mesure de fournir des prestations de transit aux réseaux de niveaux hiérarchiques inférieurs?


Listes des Tier 1¹⁰: AT&T, Lumen Technologies (anciennement CenturyLink / Level 3), Cogent Communications*, Deutsche Telekom AG, Global Telecom & Technology, Hurricane Electric*, KPN International, Liberty Global, NTT Communications, Orange, PCCW Global, Sprint, Tata Communications, Telecom Italia Sparkle, Telxius / Telefónica, Telia Carrier, Verizon Enterprise Solutions et Zayo Group.

- **Tier 2**: ce sont des acteurs de taille moyenne. Ils ont des accords de *peering* entre Tier 2 d'une même zone géographique, mais doivent acheter du transit pour bénéficier d'un accès à l'internet mondial.
- Tier 3 : ce sont des acteurs encore plus petits, qui n'ont recours qu'au transit pour assurer leur connectivité.

⁹ Selon une définition plus restrictive, un Tier 1 doit non seulement être *transit free*, mais également ne pas avoir recours au *peering* payant pour assurer sa connectivité mondiale.

¹⁰ Certains acteurs tendent à ne pas considérer Cogent et Hurricane Electric comme Tier 1 car ils n'annoncent pas toutes les routes d'Internet en IPv6 suite à des conflits entre acteurs. De plus, si Hurricane Electric est Tier 1 en IPv6, il est Tier 2 en IPv4 (source : lafibre.info).

ORGANISATION HIÉRARCHIQUE DE L'INTERNET

Les Tier 2 et Tier 3, qui ont recours partiellement ou totalement au transit pour assurer leur connectivité globale, peuvent faire le choix de ne recourir qu'à un seul transitaire (ils sont alors dits « single homed ») ou de faire appel à plusieurs transitaires (ils sont dits alors « multi homed »).

Cette hiérarchie n'est pas figée. En effet, en développant ses accords de *peering*, un Tier 3 peut devenir un Tier 2. Par ailleurs, un Tier 2 peut rentrer en relation de *peering* avec des Tier 1, devenir un fournisseur de transit et éventuellement avoir le statut de Tier 1 après la mise en place d'accords de *peering* avec l'ensemble des Tier 1. Une telle stratégie d'évolution paraît aujourd'hui suivie par certains gros FCA et CDN, lesquels tentent de déployer leurs propres infrastructures et de gravir les échelons dans cette structure hiérarchique.

1.7. Cadre de régulation applicable à l'interconnexion

Il arrive ponctuellement – en France comme ailleurs dans le monde – qu'un acteur d'internet observe une dégradation de la qualité d'expérience d'une partie seulement de ses clients, utilisant un FAI donné. Cette dégradation peut trouver sa cause dans l'apparition d'une congestion au niveau de l'interconnexion entre ce FAI et un opérateur acheminant une partie du trafic de l'acteur concerné.

De manière générale, grâce au dispositif de collecte d'informations sur l'interconnexion et l'acheminement de données sur internet, mis en place depuis 2012, l'Arcep dispose d'informations permettant de se forger une première appréciation de la situation.

Par ailleurs, les exploitants de réseaux ouverts au public sont tenus de faire droit aux demandes d'interconnexion des autres exploitants de réseaux ouverts au public présentées en vue de fournir au public des services de communications électroniques. La demande d'interconnexion ne peut être refusée que si elle est justifiée au regard, d'une part, des besoins du demandeur, d'autre part, des capacités de l'exploitant à la satisfaire. Tout refus d'interconnexion doit être motivé.

En cas de problème éventuel, l'Autorité pourrait exercer les compétences attribuées par le législateur¹¹, que ce soit par la voie d'une décision de régulation *ex ante*, ou d'une décision de règlement de différend à la demande d'une des parties¹².

Enfin, même si l'interconnexion n'est pas identique à l'accès à internet et qu'elle n'est pas couverte en tant que telle par le Règlement (UE) 2015/2120 du Parlement européen et du Conseil du 25 novembre 2015 établissant des mesures relatives à l'accès à un internet ouvert¹³, les pratiques utilisant l'interconnexion pour brider des flux spécifiques et donc limiter les droits des utilisateurs pourraient être analysées sous l'angle dudit règlement¹⁴.

12/24

¹¹ Article L. 34-8 du code des postes et des communications électroniques.

¹² Procédure prévue à l'article L. 36-8 du CPCE.

¹³ Cf. Arcep, La neutralité du net : Le cadre réglementaire en Europe.

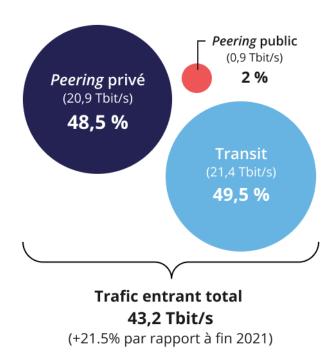
¹⁴ Cf. considérant 7 du règlement internet ouvert et considérants 5 et 6 des lignes directrices du BEREC.

2. ÉTAT DES LIEUX DE L'INTERCONNEXION EN FRANCE

2.1. Cadre de la collecte et précisions méthodologiques

Grâce à la collecte d'information sur l'interconnexion et l'acheminement de données qu'elle réalise, l'Arcep dispose de données techniques et tarifaires sur l'interconnexion du premier semestre de 2012 (S1-2012) au second semestre de 2022 (S2-2022). Bien que le marché de l'interconnexion en France comporte de nombreux acteurs, par souci de confidentialité, la publication des résultats¹⁵ ne porte que sur des données agrégées des quatre principaux FAI en France (Bouygues Telecom, Free, Orange et SFR).

Concernant la méthodologie de collecte, il convient de préciser que les « petites » interconnexions ne font pas partie des informations collectées, ce qui concentre l'analyse du présent baromètre sur les échanges de données les plus volumineux. En effet, la décision n° 2017-1492-RDPI de l'Autorité modifiant la décision n° 2012-0366 relative à la mise en place d'une collecte d'informations sur les conditions techniques et tarifaires de l'interconnexion et de l'acheminement de données précise que sont demandées aux répondants des informations concernant leurs partenaires les plus importants et non tous les partenaires, précisément : « les 20 principaux partenaires en termes de capacité globale d'interconnexion ou d'acheminement de données (tous points / sites confondus) [et] les partenaires au-delà du 20ème partageant une capacité globale d'interconnexion ou d'acheminement de données supérieure ou égale à 10 Gbit/s avec l'AS concerné et détenant des AS marqués « FR » ou « EU » dans la base de données du RIPE ».


L'Arcep travaille activement à améliorer l'harmonisation des modes de traitement d'information des opérateurs concernés par cette collecte de données.

Autorité de régulation des communications électroniques, des postes et de la distribution de la presse

¹⁵ Résultats issus des réponses des différents opérateurs à la collecte d'informations sur les conditions techniques et tarifaires de l'interconnexion et de l'acheminement de données, dont le périmètre est explicité dans la décision **2017-1492-RDPI**.

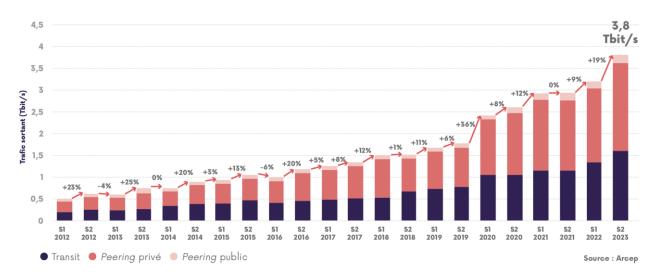
2.2. Trafic entrant

Répartition du trafic entrant à l'interconnexion sur le réseau des principaux FAI* en France (fin 2022)

* Bouygues, Free, Orange, SFR.

Le trafic entrant vers les quatre principaux FAI en France à l'interconnexion est passé de plus 35,6 Tbit/s à fin 2021 à 43.2 Tbits/s fin 2022 marquant ainsi une augmentation de 21.54 % en un an. Le trafic provient environ pour la moitié des liens de transit. Ce taux de transit assez élevé est dû en grande partie au trafic de transit entre Open Transit International (OTI), Tier 1 appartenant à Orange, et le Réseau de Backbone et de Collecte Internet d'Orange (RBCI), qui permet d'acheminer le trafic vers les clients finals de ce FAI. Ce taux de transit est beaucoup moins élevé chez les autres FAI qui, n'ayant pas en parallèle une activité de transitaire, font davantage appel au peering.

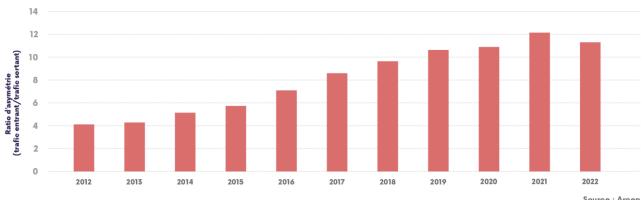
ÉVOLUTION DU TRAFIC ENTRANT À L'INTERCONNEXION VERS LES PRINCIPAUX FAI EN FRANCE ENTRE S1-2012 ET S2-2022



Précision : des corrections ont été apportées sur certains calculs modifiant les données de 2016 et 2019. Sans modifier les tendances observées, ces corrections expliquent les différences entre ce graphique et celui des précédentes éditions du baromètre.

2.3. Trafic sortant

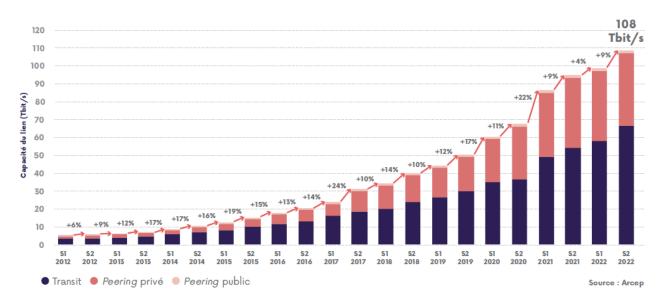
À fin 2022, le trafic sortant du réseau des quatre principaux FAI en France à l'interconnexion atteint environ 3,8 Tbit/s, soit une augmentation de 30% en comparaison avec fin 2021. Entre 2012 et 2022, ce trafic a été multiplié environ par 7.


ÉVOLUTION DU TRAFIC SORTANT À L'INTERCONNEXION VERS LES PRINCIPAUX FAI EN FRANCE ENTRE S1-2012 ET S2-2022

Précision : des corrections ont été apportées sur certains calculs modifiant les données de 2016 et 2019. Sans modifier les tendances observées, ces corrections expliquent les différences entre ce graphique et celui des précédentes éditions du baromètre.

Le trafic sortant est bien inférieur au trafic entrant. Par ailleurs, le taux d'asymétrie entre ces deux trafics est passé de 1/4 en 2012 à plus de 1/12 en 2021. Cette augmentation est due notamment à l'augmentation du contenu multimédia consulté par les clients (streaming vidéo et audio, téléchargement de contenu de grande taille, etc.).

ÉVOLUTION DU TAUX D'ASYMÉTRIE ENTRE TRAFIC ENTRANT ET TRAFIC SORTANT À L'INTERCONNEXION POUR LES PRINCIPAUX FAI EN FRANCE ENTRE 2012 ET 2022


Source : Arcep

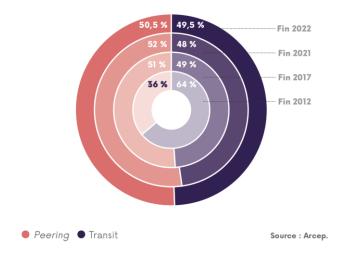
En 2022, le taux d'asymétrie diminue légèrement pour atteindre 1/11. Outre les efforts éventuels de compression et d'optimisation des flux consentis par les FCA, qui diminuent le trafic entrant auprès des FAI, cette évolution peut en partie s'expliquer par le développement de nouvelles modalités de transport du trafic vidéo en peer-to-peer qui contribuent à augmenter le trafic sortant (voir la sous-partie 2.5.4 « Évolutions liées au transport de vidéos »).

2.4. Évolution des capacités installées

Les capacités installées à l'interconnexion ont connu une augmentation du même ordre de grandeur que le trafic entrant. Les capacités installées à fin 2022 sont estimées à environ 108 Tbit/s, soit 2,7 fois plus importantes que le trafic entrant. Ce ratio n'exclut pas l'existence d'épisodes de congestion, qui peuvent survenir entre deux acteurs sur un ou des lien(s) particulier(s) en fonction de leur état à un instant donné.

ÉVOLUTION DES CAPACITÉS DES INTERCONNEXIONS DES PRINCIPAUX FAI EN FRANCE ENTRE S1-2012 ET S2-2022

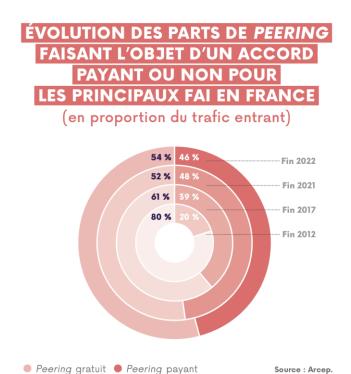
2.5. Évolution des modalités d'interconnexion


2.5.1. Peering vs. transit

Comme indiqué auparavant, il existe deux types d'interconnexion : le *peering* et le transit. Généralement, la part de *peering* augmente d'une façon régulière. Cette croissance est principalement due à l'augmentation des capacités installées en *peering* privé entre les FAI et les principaux fournisseurs de contenu et d'applications.

Cependant, entre fin 2020 et fin 2022, la part de *peering* amorce une baisse (53 % à fin 2020, 52% à fin 2021, pour atteindre 50% fin 2022). Cette situation est due, d'une part, à l'augmentation du trafic de transit (dont le trafic provenant d'Open Transit International pour l'opérateur Orange) et d'autre part, à la substitution d'une partie du trafic de *peering* avec du trafic provenant des CDN internes.

(en proportion du trafic entrant)


2.5.2. Peering gratuit vs. peering payant

Le *peering*, privé comme public, peut faire l'objet d'un accord économique entre les acteurs impliqués.

Ce qui est nommé ci-après « peering gratuit » concerne les accords de peering symétriques (cf. sous-partie 1.5.2). Ces accords, généralement passés de façon informelle (sans contrat écrit) entre les acteurs et sont appelés « gratuits » parce que les deux parties de la relation investissent dans l'interconnexion à parts égales et non parce qu'il n'y aurait aucun échange monétaire. Le coût de l'interconnexion est donc ici sous-entendu. Par exemple, le peering public peut être considéré comme « gratuit, » bien que l'adhésion à l'IXP puisse faire l'objet d'un paiement

récurrent. De même une relation de *peering* privé considérée comme « gratuite » ici peut faire l'objet d'un investissement des deux parties pour en augmenter la capacité.

Ce qui est appelé « peering payant » dans ce baromètre concerne les relations de peering asymétriques, qui font en général l'objet d'un accord de paiement formalisé (avec contrat écrit) entre les deux parties.

À l'instar de l'année dernière, la part du *peering* payant dans le trafic entrant chez les quatre principaux FAI en France est passé de 48% fin 2021 à 46% fin 2022. Cette baisse pourrait s'expliquer d'une part par l'augmentation du *peering* gratuit (*peering* privé entre acteurs de taille comparable et *peering* public) et d'autre part, par le transfert de trafic du *peering* payant entre FCA et FAI vers des CDN internes.

2.5.3. Points d'échange Internet (IXP)

Les points d'échange sont les lieux où se connectent les opérateurs en *peering* public. Les quatre principaux opérateurs en France (Orange, SFR, Bouygues, Free) sont présents sur des IXP. En France, on compte une vingtaine d'IXP, répartis un peu partout sur le territoire, y compris dans les DROM. Ces points d'échange sont gérés soit par des structures associatives (à but non lucratif) soit des entreprises. Les deux IXP les plus importants en France sont France IX et Equinix.

A la fin 2022, les IXP représentent au total environ 0.2 Tb/s en sortie et environ 0.9 Tb/s en entrée du trafic déclaré par ces opérateurs.

2.5.4. Évolutions liées au transport de vidéos

En ce qui concerne les modes d'interconnexion et afin de joindre les utilisateurs finals, les fournisseurs de contenu vidéo, comme tout fournisseur de contenu et d'applications (FCA), peuvent faire appel à des transitaires. Cette approche était la principale option disponible aux débuts d'internet. Cependant, en l'espace de quelques années, avec l'augmentation de la quantité de trafic et le besoin d'améliorer la qualité de service et d'expérience de l'utilisateur final, l'architecture d'internet a connu des évolutions et plusieurs alternatives au transit ont vu le jour, notamment le *peering*. Le *peering*, qui peut être privé ou public, permet aux FCA de s'affranchir des transitaires pour venir s'interconnecter directement aux FAI.

Afin d'améliorer la qualité de service en rapprochant le contenu au plus près des utilisateurs finals, les fournisseurs de contenu vidéo font souvent appel à des réseaux de distribution de contenu (CDN), qui substituent au transport longue distance le stockage rapproché des données, dans des serveurs cache¹⁶. Certains gros FCA ont les moyens de développer eux-mêmes et de posséder une infrastructure de transport longue distance ainsi que leurs propres CDN pour optimiser l'acheminement de leur contenu à l'instar notamment de Google, Netflix ou Meta (anciennement Facebook). Par ailleurs, les FAI déploient également leurs propres réseaux CDN.

Une autre tendance majeure observée depuis quelques années est l'arrivée des CDN internes (ou CDN on-net)¹⁷. Ces serveurs sont gérés par l'entité qui les possède (FCA, CDN ou FAI) mais sont installés au niveau du réseau même du FAI. Afin d'améliorer leur qualité de service en se rapprochant au plus près du client final, les FCA effectuent des partenariats avec les FAI afin que leur contenu soit hébergé dans des serveurs cache placés à l'intérieur du réseau des opérateurs. Ces CDN internes peuvent être ceux de l'opérateur qui les héberge, ou appartenir à des tiers. Les exemples les plus notables sont les serveurs OCA (Open Connect Appliance) de Netflix¹⁸, et Google Global Cache (GGC)¹⁹. En plus du rapprochement du contenu de l'utilisateur final, le recours à un réseau de CDN installé au sein du réseau d'un FAI peut permettre de charger les contenus vidéos dans les serveurs aux heures creuses du trafic, sans attendre que l'utilisateur en fasse la demande aux heures de pointe.

Dernière évolution : certains OTT mettent en place des technologies de redistribution du flux des vidéos en *peer to peer*²⁰ qui passent donc par les utilisateurs finals, et se remarquent dans l'évolution du trafic sortant vers certains acteurs. Cette technologie se développe depuis plusieurs années.

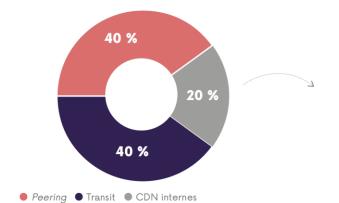
¹⁶ Voir lexique du Rapport sur l'état de l'internet en France.

¹⁷ Voir 2.6. « Répartition du trafic par mode d'interconnexion ».

¹⁸ Netflix, « Bienvenue dans le programme Open Connect », Open Connect

¹⁹ Google, « Introduction to GGC », Google Help Center.

²⁰ Voir par exemple, Guénaël Pépin, « <u>La Coupe du monde de football racontée par des acteurs de la vidéo en ligne</u> », Next/Npact,, 25 juillet 2018.


2.6. Répartition du trafic par mode d'interconnexion

Comme expliqué précédemment, les FCA cherchent de plus en plus à se rapprocher des clients finals. Pour ce faire, ils effectuent des partenariats avec les FAI afin que leur contenu soit hébergé dans des serveurs cache placés à l'intérieur du réseau des opérateurs. Ces CDN internes peuvent être ceux de l'opérateur qui les héberge ou appartenir à des tiers. En France, Google et Netflix sont les deux principaux acteurs qui intègrent des serveurs dans le réseau de certains opérateurs.

Entre fin 2021 et fin 2022, le trafic provenant des CDN internes vers les clients des principaux FAI en France continue son augmentation pour atteindre environ 10 Tbit/s. Si le *peering* et le transit restent des modes d'interconnexion largement utilisés par les opérateurs, cette année, le taux de trafic provenant des CDN internes (20 %) semble légèrement augmenter en comparaison avec l'année dernière.

Ce taux varie fortement d'un FAI à l'autre : chez certains opérateurs le taux de trafic entrant provenant de CDN internes constitue autour de 6% du trafic vers les utilisateurs finals alors que pour d'autres, il constitue plus d'un tiers –presque la moitié-- du trafic entrant injecté dans leurs réseaux. Par ailleurs, le ratio de trafic entrant/sortant varie toujours entre 1/8 et 1/15 en fonction de l'opérateur. Autrement dit, les données rendues disponibles au moyen des CDN internes sont consultées entre 8 et 15 fois en moyenne.

RÉPARTITION ENTRE LES DIFFÉRENTS MODES D'INTERCONNEXION DU TRAFIC VERS LES CLIENTS DES PRINCIPAUX FAI EN FRANCE (FIN 2022)

Source : Arcep

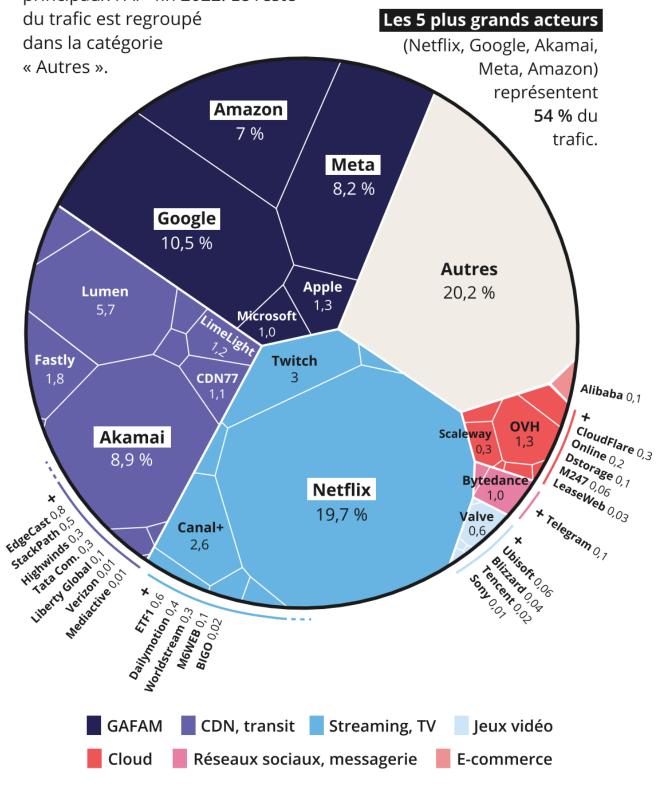
2.7. Décomposition du trafic selon l'origine

À partir des données collectées auprès des opérateurs²¹, l'Arcep estime la proportion de trafic rapportée au volume total agrégé que représentent quand ces derniers sont identifiables, les fournisseurs de contenu et d'applications et les acteurs du transport de contenu (CDN notamment).

Il convient de noter que les données relatives à l'interconnexion et au trafic analysées concernent des relations directes entre acteurs si bien qu'un contenu qui serait hébergé *via* un CDN ou un hébergeur tiers ne faisant pas l'objet d'une interconnexion directe déclarée à l'Autorité ne serait pas visible dans le graphique présenté ci-après. Par exemple : il est possible qu'un fournisseur de contenu avec un trafic sortant significatif soit absent de ce graphique parce qu'il passe par des acteurs tiers pour acheminer son trafic jusqu'aux FAI concernés.

Fin 2022, environ 54 % du trafic vers les clients des principaux FAI en France provient de 5 acteurs suivants (FCA et CDN): Netflix, Google, Akamai, Meta et Amazon. Ceci indique une concentration de plus en plus nette du trafic autour de quelques acteurs.

L'importance relative de plusieurs fournisseurs de CDN dans la décomposition du trafic présentée dans le graphique, ainsi que la progression importante de certains acteurs comme Lumen (qui passe de 3% environ du volume de trafic entrant à environ 6%) confirme le rôle important de ces acteurs dans l'acheminement du trafic internet. Par exemple, Disney+ apparaît dans ce classement au travers de ses différents CDN (parmi lesquels figure Akamaï²²).


-

²¹ lci aussi, les données agrégées concernent seulement les quatre principaux opérateurs commerciaux en France.

²² Voir « <u>Disney+ compte près de 130 millions d'abonnés, nettement plus qu'attendu</u> », *Le Parisien,* 10 février 2022.

Décomposition selon l'origine du trafic vers les clients des principaux FAI en France (fin 2022)

Pourcentage du trafic entrant au point d'interconnexion de 39 acteurs liés au transport ou à la production de contenu déclarés par les principaux FAI* fin 2022. Le reste

^{*} Bouygues, Free, Orange, SFR.

2.8. Évolution des tarifs

Même si les fourchettes sont globalement les mêmes (entre moins de 5 centimes et quelques euros HT par mois et par Mbit/s), les tarifs des prestations de transit accusent une légère baisse – poursuivant la tendance observée au cours des dix dernières années (voir sous-partie 1.5.1).

Pour ce qui est des prestations de *peering*, elles se négocient toujours dans une fourchette entre une vingtaine de centimes d'euros et quelques euros HT par mois et par Mbit/s ²³.

Dans la majorité des cas, les CDN internes sont gratuits. Néanmoins, il arrive que ceux-ci soient payants dans le cadre plus large de la prestation de *peering* payant que le FCA a contracté par ailleurs avec le FAI.

Autorité de régulation des communications électroniques, des postes et de la distribution de la presse

²³ Les fourchettes de tarifs ne reflètent que les tarifs que les acteurs ayant répondu au questionnaire payent pour les prestations de transit, peering ou CDN internes.