What Do We Know about Mobile Termination?

Comment on Tommaso Valletti and Stephen Littlechild

Jean Tirole

XIèmes entretiens de l'ARCEP "L'Economie des Mobiles", 26 mars 2007

I. WHAT DO WE KNOW ABOUT TWO-WAY ACCESS?

I. WHAT DO WE KNOW ABOUT TWO-WAY ACCESS?

✓ Different ways of fixing a: (i) non-cooperative determination; (ii) negotiation; (iii) negotiation under a regulatory requirement of reciprocal charges; (iv) regulation of termination charges.

Example: MTM

- ✓ French operators: moved away from bill-and-keep (a = 0) in 2004
- ✓ by contrast, Ofcom (2003) concerned about excessive termination charges. [Also European Regulators Group, European Commission, ARCEP now, etc.]

- for society,
- but also for the industry.

- for society,
- but also for the industry.

- Termination is
 - an input into the production of calls,
 - monopolistically supplied even in a very competitive telecom industry (small networks have at least as much monopoly power as large ones).

- for society,
- but also for the industry.

- Termination is
 - an input into the production of calls,
 - monopolistically supplied even in a very competitive telecom industry (small networks have at least as much monopoly power as large ones).
- If operators do not compete (national monopolies/international calls in old times): two monopoly markups: prices even higher than monopoly markups.

- for society,
- but also for the industry.

- Termination is
 - an input into the production of calls,
 - monopolistically supplied even in a very competitive telecom industry (small networks have at least as much monopoly power as large ones).
- If operators do not compete (national monopolies/international calls in old times): two monopoly markups: prices even higher than monopoly markups.
- If they compete: can tax rival.

- for society,
- but also for the industry.

- Termination is
 - an input into the production of calls,
 - monopolistically supplied even in a very competitive telecom industry (small networks have at least as much monopoly power as large ones).
- If operators do not compete (national monopolies/international calls in old times): two monopoly markups: prices even higher than monopoly markups.
- If they compete: can tax rival.
- $\checkmark\,$ Foreclosure: incumbent may make it hard for an entrant to enter.

(2) Negotiated termination charges:

Light-handed regulation: reciprocity of termination charges. But is the regulatory concern about collusion warranted? (2) Negotiated termination charges: Light-handed regulation: reciprocity of termination charges. But is the regulatory concern about collusion warranted? Consider the following analogy:

 $\checkmark~$ Two IP owners, each with one patent. Patents have same functionality/allow production of the same good downstream.

Initially: cutthroat competition in downstream market.

(2) Negotiated termination charges: Light-handed regulation: reciprocity of termination charges. But is the regulatory concern about collusion warranted? Consider the following analogy:

- ✓ Two IP owners, each with one patent. Patents have same functionality/allow production of the same good downstream.
 - Initially: cutthroat competition in downstream market.
- $\checkmark\,$ Formation of patent pool (transfer patents to pool).

Marginal cost $= c + \frac{a}{2}$ \implies can induce monopoly price downstream despite perfect competition (a such that $p^{\text{monopoly}} = c + \frac{a}{2}$).

Marginal cost $= c + \frac{a}{2}$ \implies can induce monopoly price downstream despite perfect competition (a such that $p^{\text{monopoly}} = c + \frac{a}{2}$).

 \checkmark Is this a good analogy?

Analysis: assume (for the moment)

- reciprocal termination fee a,
- no on-net/off-net price discrimination,
- no receiver benefits/payments (CPP).

Analysis: assume (for the moment)

- reciprocal termination fee a,
- no on-net/off-net price discrimination,
- no receiver benefits/payments (CPP).
- ✓ Collusion intuition [Armstrong 1998, Laffont-Rey-Tirole 1998a]
 - If half of the calls are off net, operators' marginal cost per call is $c + \frac{a c_t}{2}$.
 - Hence if linear pricing, "raising-each-other's cost" strategy raises price to consumer.

Analysis: assume (for the moment)

- reciprocal termination fee a,
- no on-net/off-net price discrimination,
- no receiver benefits/payments (CPP).

✓ Collusion intuition [Armstrong 1998, Laffont-Rey-Tirole 1998a]

- If half of the calls are off net, operators' marginal cost per call is $c + \frac{a c_t}{2}$.
- Hence if linear pricing, "raising-each-other's cost" strategy raises price to consumer.

Note: in equilibrium no transfer between operators. "Termination charges do not matter if no or small inter-operator transfers" is a fallacy.

- Yet analogy and standard regulatory concerns need to be revisited [Laffont-Rey-Tirole 1998a.]
 - (a) Instability of competition (if $a \gg c_t/\text{close substitutes}$) unlike in case of patent pool, can avoid paying tax to rival (capture market).

- Yet analogy and standard regulatory concerns need to be revisited [Laffont-Rey-Tirole 1998a.]
 - (a) Instability of competition (if $a \gg c_t/\text{close substitutes}$) unlike in case of patent pool, can avoid paying tax to rival (capture market).
 - (b) Displacement of competitive locus
 - Highly profitable consumers ⇒ competition intense in other dimensions (monthly subscription charges or connection fees, handset subsidies). Neutrality result. True even for pre-paid customers (large, regular handset subsidies).
 - Same argument for the waterbed effect for FTM termination. (Armstrong-Wright 2007 add FTM termination revenues to LRT: neutrality still: 100% waterbed effect).
 - Profit neutrality result does not rely on cutthroat competition [actually LRT assume sufficiently imperfect competition in view of (a) above.]

(c) Asymmetric calling patterns

Increase in *a*: little (big) incentive to attract callers (receivers). LRT profit neutrality result generalizes, with more sophisticated nonlinear pricing tariffs [Dessein 2003, Hahn 2004].

(c) Asymmetric calling patterns

Increase in *a*: little (big) incentive to attract callers (receivers). LRT profit neutrality result generalizes, with more sophisticated nonlinear pricing tariffs [Dessein 2003, Hahn 2004].

(d) Non-mature market: neutrality result breaks down. Operators want below-cost termination [Dessein 2003].

(c) Asymmetric calling patterns

Increase in *a*: little (big) incentive to attract callers (receivers). LRT profit neutrality result generalizes, with more sophisticated nonlinear pricing tariffs [Dessein 2003, Hahn 2004].

- (d) Non-mature market: neutrality result breaks down. Operators want below-cost termination [Dessein 2003].
- (e) Ability to affect price level depends on CPP (see below discussion of RPP: Intuitively, when a increases, the reduction in the net cost of termination, $c_t a$, leads to a reduction in reception charges under RPP. Termination charge then cannot affect the total price of communication).

Concerns about foreclosure are also weaker (under reciprocal access charges)

• Intuitively, if each consumer has calling volume V, N_1 and N_2 are the number of operator 1 and 2's customers, then net off-net revenue =

$$(N_1N_2V - N_2N_1V)(a - c_t) = 0.$$

Concerns about foreclosure are also weaker (under reciprocal access charges)

• Intuitively, if each consumer has calling volume V, N_1 and N_2 are the number of operator 1 and 2's customers, then net off-net revenue =

$$(N_1N_2V - N_2N_1V)(a - c_t) = 0.$$

• Of course volumes/types of customers are endogenous, (and may be asymmetric), but this reasoning sets a benchmark. [Carter-Wright (2003)].

II. ON/OFF NET PRICE DISCRIMINATION

[Laffont-Rey-Tirole 1998b, Armstrong-Wright 2007]

Price p_i for on net calls[UK 2003: MTM 5.9 pence]Price \hat{p}_i for off net calls[UK 2003: MTM 24.9 pence]*

Much higher volume of on-net communications (UK, France).

 \ast Average termination charge: 9ppm (4.7ppm in 2006).

 $\checkmark \ \text{ If } a > c_t \ , \ \widehat{p}_i > p_i,$

- $\checkmark \ \text{ If } a > c_t \ , \ \widehat{p}_i > p_i,$
- $\checkmark~$ If a large, then networks are de facto incompatible and equilibrium may fail to exist.

- $\checkmark \ \text{ If } a > c_t \ , \ \widehat{p}_i > p_i,$
- $\checkmark~$ If a large, then networks are de facto incompatible and equilibrium may fail to exist.
- $\checkmark\,$ Concern about for eclosure if asymmetric networks.

- $\checkmark \ \text{ If } a > c_t \ , \ \widehat{p}_i > p_i,$
- $\checkmark\,$ If a large, then networks are de facto incompatible and equilibrium may fail to exist.
- $\checkmark\,$ Concern about foreclosure if asymmetric networks.

✓ [Gans-King 2001, Calzada-Valetti 2005]

Cooperative determination of the termination fee: $a < c_t$ (discount). Then customers wish to belong to small network \implies price competition is muted.

Bill and keep may be bad for consumers (high fixed charges), who prefer cost-based termination charges.

III. RECEIVER PAY PRINCIPLE

[Laffont-Marcus-Rey-Tirole 2003; Jeon-Laffont-Tirole 2004]

Suppose $\begin{cases} \text{ caller's utility is } u(q) \ (q \text{ length of call}) \\ \text{ receiver's utility is } \beta u(q). \end{cases}$

 $p^{C}(p^{R}) = \text{per minute caller (receiver) charge.}$

III. RECEIVER PAY PRINCIPLE

[Laffont-Marcus-Rev-Tirole 2003; Jeon-Laffont-Tirole 2004]

Suppose $\begin{cases} \text{ caller's utility is } u(q) \ (q \text{ length of call}) \\ \text{ receiver's utility is } \beta u(q). \end{cases}$

 $p^{C}(p^{R}) = \text{per minute caller (receiver) charge.}$

 \checkmark Social optimum (same for monopoly operator):

Samuelson rule for public goods: $p^C + p^R = c$

Efficient allocation between the two sides:

$$p^R = \beta p^C$$

$\checkmark~$ Platform competition

• Off-net-cost pricing rule: in equilibrium, traffic is priced *as if* it were entirely off-net:

$$p^{C} = c + (a - c_{t})$$
$$p^{R} = c_{t} - a$$

[Note: satisfies Samuelson rule.]

$\checkmark~$ Platform competition

• Off-net-cost pricing rule: in equilibrium, traffic is priced *as if* it were entirely off-net:

$$p^{C} = c + (a - c_{t})$$
$$p^{R} = c_{t} - a$$

[Note: satisfies Samuelson rule.]

• \implies socially optimal termination charge:

$$a = c_t - \frac{\beta c}{1 + \beta}$$

[Cost-based termination charge has caller bear entire burden]

\checkmark Platform competition

• Off-net-cost pricing rule: in equilibrium, traffic is priced *as if* it were entirely off-net:

$$p^{C} = c + (a - c_{t})$$
$$p^{R} = c_{t} - a$$

[Note: satisfies Samuelson rule.]

• \implies socially optimal termination charge:

$$a = c_t - \frac{\beta c}{1 + \beta}$$

[Cost-based termination charge has caller bear entire burden]

• Random utilities $(u^C(q,\omega),\,u^R(q,\omega))$
 $p^C+p^R < c \text{ at the social optimum}.$

\checkmark Platform competition

• Off-net-cost pricing rule: in equilibrium, traffic is priced *as if* it were entirely off-net:

$$p^{C} = c + (a - c_{t})$$
$$p^{R} = c_{t} - a$$

[Note: satisfies Samuelson rule.]

• \implies socially optimal termination charge:

$$a = c_t - \frac{\beta c}{1 + \beta}$$

[Cost-based termination charge has caller bear entire burden]

- Random utilities $(u^C(q,\omega),\,u^R(q,\omega))$
 $p^C+p^R < c \text{ at the social optimum}.$
- Impact of RPP on termination rates [Littlechild].

On/off net price discrimination

[Jeon-Laffont-Tirole 2004]

Competition among operators may easily lead to de facto lack of network connectivity.

On/off net price discrimination

[Jeon-Laffont-Tirole 2004]

Competition among operators may easily lead to de facto lack of network connectivity.

High off-net caller prices hurt receivers on other networks. High off-net receiver prices hurt callers on other networks.

(1) An asymmetric regulation

(1) An asymmetric regulation

 \checkmark FTM = two-way access; however:

(1) An asymmetric regulation

- \checkmark FTM = two-way access; however:
- \checkmark MTF regulated
 - one motivation for regulation [not to allow fixed-link operator to say no]: vertical integration.

[Hong Kong: 5 fixed/5 mobile: FTF and MTM deregulated, FTM/MTF about to be.]

(1) An asymmetric regulation

 \checkmark FTM = two-way access; however:

$\checkmark~$ MTF regulated

• one motivation for regulation [not to allow fixed-link operator to say no]: vertical integration.

[Hong Kong: 5 fixed/5 mobile: FTF and MTM deregulated, FTM/MTF about to be.]

 \implies mobile can tax fixed link through FTM termination.

(2) Waterbed effect

Above cost FTM termination implies lower charges for mobile subscribers, and increases mobile termination (generating externalities even for fixed-line subscribers, who can call receivers on the go).

(2) Waterbed effect

Above cost FTM termination implies lower charges for mobile subscribers, and increases mobile termination (generating externalities even for fixed-line subscribers, who can call receivers on the go).

• Genakos-Valletti paper.

[Outgoing prices react little to mobile termination rate (treated as exogenous); waterbed effect much stronger for monthly contracts than for pre-pay, who receive few calls (low usage, churn). Accounting measures of profit positively related to mobile termination rate.]

• How high is the FTM elasticity? [UKCC, ACCC: too few FTM calls.]

(2) Waterbed effect

Above cost FTM termination implies lower charges for mobile subscribers, and increases mobile termination (generating externalities even for fixed-line subscribers, who can call receivers on the go).

• Genakos-Valletti paper.

[Outgoing prices react little to mobile termination rate (treated as exogenous); waterbed effect much stronger for monthly contracts than for pre-pay, who receive few calls (low usage, churn). Accounting measures of profit positively related to mobile termination rate.]

• How high is the FTM elasticity? [UKCC, ACCC: too few FTM calls.]

(3) Constraints on the differentiation of termination charges

• Multi-homing and substitution Customer can call from either mobile or fixed line [Hausman-Wright 2007: Australia: mobile subscribers receive more than two times as many MTM calls as FTM calls. Reverse in US, where almost no price differential]

• Multi-homing and substitution Customer can call from either mobile or fixed line [Hausman-Wright 2007: Australia: mobile subscribers receive more than two times as many MTM calls as FTM calls. Reverse in US, where almost no price differential]

In France $a_{\text{MTM}} = a_{\text{FTM}} \implies$ no longer an issue in principle if both off-net. Often $a_{\text{MTM}} < a_{\text{FTM}}$.

• Outright network substitution Customer no longer subscribes to landline.

• Multi-homing and substitution Customer can call from either mobile or fixed line [Hausman-Wright 2007: Australia: mobile subscribers receive more than two times as many MTM calls as FTM calls. Reverse in US, where almost no price differential]

In France $a_{\text{MTM}} = a_{\text{FTM}} \implies$ no longer an issue in principle if both off-net. Often $a_{\text{MTM}} < a_{\text{FTM}}$.

- Outright network substitution Customer no longer subscribes to landline.
- (b) Arbitrage by receiver (termination)

• Multi-homing and substitution Customer can call from either mobile or fixed line [Hausman-Wright 2007: Australia: mobile subscribers receive more than two times as many MTM calls as FTM calls. Reverse in US, where almost no price differential]

In France $a_{\text{MTM}} = a_{\text{FTM}} \implies$ no longer an issue in principle if both off-net. Often $a_{\text{MTM}} < a_{\text{FTM}}$.

- Outright network substitution Customer no longer subscribes to landline.
- (b) Arbitrage by receiver (termination)
 - Fixed-mobile convergence XTM vs. XTF: mobile termination until new numbering appears.